264 research outputs found

    Debates in the Digital Humanities Formerly Known as Humanities Computing

    Get PDF
    published_or_final_versio

    Antiproliferative activity of extracts of Euphorbia tirucalli L (Euphorbiaceae) from three regions of Brazil

    Get PDF
    Purpose: To investigate Euphorbia tirucalli extract for probable geographic variations in its antiproliferative activity.Methods: The aerial parts of E. tirucalli were collected in the Brazilian states of Mato Grosso, Rio de Janeiro, Pará, Minas Gerais and Santa Catarina. The 70 % ethanol extract was obtained according to the procedure described in Brazilian Homeopathic Pharmacopeia. The antiproliferative activity of extracts, in concentrations of 62, 125, 250, and 500 μg mL-1, was tested against leukemia (HL-60), lymphoma (Daudi) and melanoma (B16F10) cell lines using methyl thiazol tetrazolium assay (MTT). Phytochemical analysis were carried out using High-performance liquid chromatography-diode array (HPLC-UV-DAD) and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI(-) FT-ICR MS) assays.Results: There was significant regional variability in the cytotoxicity of E. tirucalli extracts in a dosedependent manner. The extracts had similar activity towards leukemia cell line HL-60, decreasing cell viability to about 60 – 70 %. The extract showed the presence of ellagitannins, flavonoids, veracylglucan, and acid triterpenes as the major compounds.Conclusion: While the results support the ethnopharmacological use of E. tirucalli throughout Brazil, regional quantitative differences found in some classes of secondary metabolites may explain the variations observed in antitumor activity.Keywords: Aveloz, Cancer, Cytotoxicity, Antiproliferative, Ethnopharmacological, Traditional medicin

    Integrated photonic quantum gates for polarization qubits

    Get PDF
    Integrated photonic circuits have a strong potential to perform quantum information processing. Indeed, the ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. However, the technology for handling polarization encoded qubits, the most commonly adopted approach, is still missing in quantum optical circuits. Here we demonstrate the first integrated photonic Controlled-NOT (CNOT) gate for polarization encoded qubits. This result has been enabled by the integration, based on femtosecond laser waveguide writing, of partially polarizing beam splitters on a glass chip. We characterize the logical truth table of the quantum gate demonstrating its high fidelity to the expected one. In addition, we show the ability of this gate to transform separable states into entangled ones and vice versa. Finally, the full accessibility of our device is exploited to carry out a complete characterization of the CNOT gate through a quantum process tomography.Comment: 6 pages, 4 figure

    Modeling Magnification and Anisotropy in the Primate Foveal Confluence

    Get PDF
    A basic organizational principle of the primate visual system is that it maps the visual environment repeatedly and retinotopically onto cortex. Simple algebraic models can be used to describe the projection from visual space to cortical space not only for V1, but also for the complex of areas V1, V2 and V3. Typically a conformal (angle-preserving) projection ensuring local isotropy is regarded as ideal and primate visual cortex is often regarded as an approximation of this ideal. However, empirical data show systematic deviations from this ideal that are especially relevant in the foveal projection. The aims of this study were to map the nature of anisotropy predicted by existing models, to investigate the optimization targets faced by different types of retino-cortical maps, and finally to propose a novel map that better models empirical data than other candidates. The retino-cortical map can be optimized towards a space-conserving homogenous representation or a quasi-conformal mapping. The latter would require a significantly enlarged representation of specific parts of the cortical maps. In particular it would require significant enlargement of parafoveal V2 and V3 which is not supported by empirical data. Further, the recently published principal layout of the foveal singularity cannot be explained by existing models. We suggest a new model that accurately describes foveal data, minimizing cortical surface area in the periphery but suggesting that local isotropy dominates the most foveal part at the expense of additional cortical surface. The foveal confluence is an important example of the detailed trade-offs between the compromises required for the mapping of environmental space to a complex of neighboring cortical areas. Our models demonstrate that the organization follows clear morphogenetic principles that are essential for our understanding of foveal vision in daily life

    Quantum interferometry with three-dimensional geometry

    Get PDF
    Quantum interferometry uses quantum resources to improve phase estimation with respect to classical methods. Here we propose and theoretically investigate a new quantum interferometric scheme based on three-dimensional waveguide devices. These can be implemented by femtosecond laser waveguide writing, recently adopted for quantum applications. In particular, multiarm interferometers include "tritter" and "quarter" as basic elements, corresponding to the generalization of a beam splitter to a 3- and 4-port splitter, respectively. By injecting Fock states in the input ports of such interferometers, fringe patterns characterized by nonclassical visibilities are expected. This enables outperforming the quantum Fisher information obtained with classical fields in phase estimation. We also discuss the possibility of achieving the simultaneous estimation of more than one optical phase. This approach is expected to open new perspectives to quantum enhanced sensing and metrology performed in integrated photonic.Comment: 7 pages (+4 Supplementary Information), 5 figure

    Optical nanofibers and spectroscopy

    Full text link
    We review our recent progress in the production and characterization of tapered optical fibers with a sub-wavelength diameter waist. Such fibers exhibit a pronounced evanescent field and are therefore a useful tool for highly sensitive evanescent wave spectroscopy of adsorbates on the fiber waist or of the medium surrounding. We use a carefully designed flame pulling process that allows us to realize preset fiber diameter profiles. In order to determine the waist diameter and to verify the fiber profile, we employ scanning electron microscope measurements and a novel accurate in situ optical method based on harmonic generation. We use our fibers for linear and non-linear absorption and fluorescence spectroscopy of surface-adsorbed organic molecules and investigate their agglomeration dynamics. Furthermore, we apply our spectroscopic method to quantum dots on the surface of the fiber waist and to caesium vapor surrounding the fiber. Finally, towards dispersive measurements, we present our first results on building and testing a single-fiber bi-modal interferometer.Comment: 13 pages, 18 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: changed title, clarification of some points in the text, added references, replacement of Figure 13

    Line orientation adaptation: local or global?

    Get PDF
    Prolonged exposure to an oriented line shifts the perceived orientation of a subsequently observed line in the opposite direction, a phenomenon known as the tilt aftereffect (TAE). Here we consider whether the TAE for line stimuli is mediated by a mechanism that integrates the local parts of the line into a single global entity prior to the site of adaptation, or the result of the sum of local TAEs acting separately on the parts of the line. To test between these two alternatives we used the fact the TAE transfers almost completely across luminance contrast polarity [1]. We measured the TAE using adaptor and test lines that (1) either alternated in luminance polarity or were of a single polarity, and (2) either alternated in local orientation or were of a single orientation. We reasoned that if the TAE was agnostic to luminance polarity and was parts-based, we should obtain large TAEs using alternating-polarity adaptors with single-polarity tests. However we found that (i) TAEs using one-alternating-polarity adaptors with all-white tests were relatively small, increased slightly for two-alternating-polarity adaptors, and were largest with all-white or all-black adaptors. (ii) however TAEs were relatively large when the test was one-alternating polarity, irrespective of the adaptor type. (iii) The results with orientation closely mirrored those obtained with polarity with the difference that the TAE transfer across orthogonal orientations was weak. Taken together, our results demonstrate that the TAE for lines is mediated by a global shape mechanism that integrates the parts of lines into whole prior to the site of orientation adaptation. The asymmetry in the magnitude of TAE depending on whether the alternating-polarity lines was the adaptor or test can be explained by an imbalance in the population of neurons sensitive to 1st-and 2nd-order lines, with the 2nd-order lines being encoded by a subset of the mechanisms sensitive to 1st-order lines
    • …
    corecore